
The APP procedure for estimating
the Cohen’s effect size

Xiangfei Chen
Mathematical Sciences, New Mexico State University,

Las Cruces, New Mexico, USA

David Trafimow
Department of Psychology, New Mexico State University,

Las Cruces, New Mexico, USA

Tonghui Wang and Tingting Tong
Mathematical Sciences, New Mexico State University,

Las Cruces, New Mexico, USA, and

Cong Wang
Mathematics, University of Nebraska Omaha, Omaha, Nebraska, USA

Abstract

Purpose –The authors derive the necessarymathematics, provide computer simulations, provide links to free
and user-friendly computer programs, and analyze real data sets.
Design/methodology/approach – Cohen’s d, which indexes the difference in means in standard deviation
units, is themost popular effect sizemeasure in the social sciences and economics. Not surprisingly, researchers
have developed statistical procedures for estimating sample sizes needed to have a desirable probability of
rejecting the null hypothesis given assumed values for Cohen’s d, or for estimating sample sizes needed to have
a desirable probability of obtaining a confidence interval of a specified width. However, for researchers
interested in using the sample Cohen’s d to estimate the population value, these are insufficient. Therefore, it
would be useful to have a procedure for obtaining sample sizes needed to be confident that the sample. Cohen’s
d to be obtained is close to the population parameter the researcher wishes to estimate, an expansion of the a
priori procedure (APP). The authors derive the necessary mathematics, provide computer simulations and
links to free and user-friendly computer programs, and analyze real data sets for illustration of ourmain results.
Findings – In this paper, the authors answered the following two questions: The precision question: How close
do I want my sample Cohen’s d to be to the population value? The confidence question: What probability do I
want to have of being within the specified distance?
Originality/value –To the best of the authors’ knowledge, this is the first paper for estimating Cohen’s effect
size, using the APP method. It is convenient for researchers and practitioners to use the online computing
packages.

Keywords Effect size, Cohen’s d, Non-central t distribution, Minimum sample size

Paper type Research paper

1. Introduction
Cohen (e.g. 1988) famously argued that researchers should be concerned not only with
whether an effect is present but with the size of the effect too. Cohen discussed a variety of
different effect size indices, and other researchers have added to the effect size toolbox.
Nevertheless, for typical studies, where economic data for two groups are compared,
economic data for two countries are compared, or where an experimental group is compared
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to a control group, Cohen’s d remains by far the most popular effect size index. As will be
explained in more detail in the subsequent section, Cohen’s d denotes the difference in means
divided by the standard deviation. Thus, Cohen’s d provides valuable information about how
much the means differ in standard deviation units.

One reason that scientists in the social and economic sciences have found Cohen’s
d useful is that many of the dependent measures these sciences do not have intrinsic
meaning. For instance, whereas it might be reasonably clear what a dollar means, the
meaning of a unit on an attitude scale might be less clear. If the mean attitude in the
experimental condition is 2 and the mean attitude in the control condition is 1, is this a small
difference or a large one? By converting the difference in means to Cohen’s d, the researcher
can gain an idea of the size of the difference in standard deviation units, even when the scale
units are not themselves intrinsically meaningful. Another advantage of Cohen’s d is that it
facilitates comparisons across studies. Even if scale units are different for different studies,
thereby rendering them seemingly impossible to compare, researchers still can compare in
terms of standard deviation units. Many researchers have taken advantage of this,
particularly in meta-analytic research. Despite the popularity of Cohen’s d and its obvious
usefulness, there remains an important limitation. Specifically, the Cohen’s d that a
researcher obtains in a particular experiment is a sample statistic. It is not a population
value. Typically, researchers are not interested in sample statistics for their own sake, but
because they provide useful estimates of population values. Thus, there is an important
question that has not been properly addressed: how well does Cohen’s d estimate the
population effect size? Although researchers have long known how to compute traditional
confidence intervals for Cohen’s d, traditional confidence intervals do not properly address
the question. This is because, for example, although 95% of 95% confidence intervals
surround the population parameter, it is not the case that the population parameter has a
95% chance of being within a 95% confidence interval. This last is unknown. In addition,
Trafimow and Uhalt (2020) have shown that sample confidence intervals tend to be
inaccurate representations of population confidence intervals unless sample sizes are much
larger than those typically employed. An alternative way to address the issue is to use the a
priori procedure (APP) that has been employed previously in a variety of ways not
pertaining to Cohen’s d (e.g. Li et al., 2020; Trafimow, 2017, 2019; Trafimow andMacDonald,
2017; Trafimow et al., 2020a; Wang et al., 2020, 2021; Wei et al., 2020). Although the APP
uses confidence intervals, it does so in a way that deviates importantly from traditional
confidence intervals. To use APP thinking to address Cohen’s d, the researcher would ask
the two bullet-pointed questions below.

RQ1. The precision question: How close do I want my sample Cohen’s d to be to the
population value?

RQ2. The confidence question: What probability do I want to have of being within the
specified distance?

For example, the research might wish to have a 95% probability of obtaining Cohen’s
d within a tenth of a standard deviation of the population value. The present goal is to
determine the sample size the researcher needs to collect to meet the precision and confidence
specifications in the contexts of independent and matched samples experimental designs.

This paper is organized as follows. Definitions of Cohen’s effect sizes for both populations
and samples are given in Section 2, together with properties of noncentral t distributions. In
Section 3, the APPmethods are applied for estimating population effect size θ in independent
case and θD in dependent case. In Section 4, the simulation study, the coverage rate, and real
data examples are provided in supporting our main results given in Section 3. Conclusion
remarks are given in Sections 5.
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2. Preliminaries
Effect size is a statistical concept that measures the strength of the relationship between two
variables on a numeric scale. For example, in medical education research studies that compare
different educational interventions, effect size is the magnitude of the difference between
groups. The absolute effect size is the difference between the average, ormean, outcomes in two
different intervention groups. The standard deviation of the effect size is of critical importance,
since it indicates how much uncertainty is included in the measurement. For more details and
applications, see, Sullivan and Feinn (2012), Schafer and Schwarz (2019), Bhandari (2020).

Cohen’s d is one of the most common ways to measure effect size, which is known as the
difference of two population means and it is divided by the standard deviation from the data.
Mathematically, Cohen’s effect size is denoted by:

θ ¼ μ1 � μ2
σ

; (2.1)

where μ1 and μ2 aremeans of two populations, and σ is the standard deviation based on either
or both populations.

Cohen’s d is defined as the difference between two means divided by a standard deviation
for the data obtained from both populations:

d ¼ X 1 � X 2

S
; (2.2)

where X 1 and X 2 are sample means and S, defined by Jacob Cohen, is the pooled standard
deviation (for two independent samples)

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1 � 1ÞS2

1 þ ðn2 � 1ÞS2
2

n1 þ n2 � 2

s
;

and n1, S1, n2, S2 are sample sizes and sample variances of two independent samples,
respectively.

Note that confidence intervals of standardized effect sizes, especially Cohen’s d, rely on the
calculation of confidence intervals of noncentrality parameters. In order to find the minimum
sample sizes for estimating the Cohen’s effect size θ given in (2.1) by Cohen’s d given in (2.2),
we need the following definition.

Definition 2.1. Let Z and U be independent random variables, Z ∼ N(λ, 1), the normal
distribution with mean λ and standard deviation 1, and U ∼ χ2m, the chi-
square distribution with m degrees of freedom. The random variable T
given by

T ¼ Zffiffiffiffiffiffiffiffiffiffiffi
U=m

p (2.3)

is said to have a noncentral t-distribution with m degrees of freedom and the noncentrality
parameter λ, denoted by T ∼ tm(λ).

It is easy to obtain the following properties of T ∼ tm(λ) (see Nguyen and Wang, 2008).

(1) The probability density function (pdf) of T is given by

fTðt; λÞ ¼ 1

2ðmþ1Þ=2Γ m
2

� � ffiffiffiffiffiffiffi
mπ

p
Z

∞

0

x
m−1
2 exp −

1

2
xþ t

ffiffiffiffi
x

m

r
� λ

� �2
" #( )

dx:
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(2) The mean and variance of T are

EðTÞ ¼ λ

ffiffiffiffi
m

2

r
Γððm� 1Þ=2Þ

Γðm=2Þ ; for m > 1

and

VarðTÞ ¼ mð1þ λ2Þ
m� 2

� λ2m

2

Γððm� 1Þ=2Þ
Γðm=2Þ

� �2

for m > 2;

respectively. For convenience, if we use the correction factor J(m) given by

JðmÞ ¼
ffiffiffiffi
m

2

r
Γððm� 1Þ=2Þ

Γðm=2Þ ; (2.4)

then the mean and the variance of T are

EðTÞ ¼ JðmÞ λ; for m > 1; (2.5)

and

VarðTÞ ¼ mð1þ λ2Þ
m� 2

� JðmÞ λð Þ2; for m > 2: (2.6)

We will use the following results in the proofs of our main results to be given in next section.

Proposition 2.1. Let X11; . . . ;X1n1 be a random sample of size n1 from N(μ1, σ
2), X21, . . .,

X2n2 be a random sample of size n2 from N(μ2, σ
2). Assume that two

samples are independent. Let θ and d be the Cohen’s effect sizes given in
(2.1) and (2.2), respectively. Thenffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1n2

n1 þ n2

r
d ∼ tn1þn2−2ðλÞ with λ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n2

n1 þ n2

r
θ:

Proof. From the basic statistics, we know that.

(1) X 1 −X2 ∼Nðμ1 − μ2; ðn−11 þ n−12 Þσ2Þ so that Z ≡

ffiffiffiffiffiffiffiffiffi
n1n2
n1þn2

q
d ∼Nðλ; 1Þ.

(2)
ðn1 − 1ÞS2

1

σ2 ∼ χ2n1−1 and
ðn2 − 1ÞS2

2

σ2 ∼ χ2n2−1 so that ðn1þn2 − 2ÞS2

σ2 ∼ χ2n1þn2−2
as S2

1 and S2
2 are

independent.

Now by Definition 2.1, T ¼
ffiffiffiffiffiffiffiffiffi
n1n2
n1þn2

q
d ∼ tn1þn2−2ðλÞ, the desired result follows. ,

For the dependent case, we have the following result.

Proposition 2.2. Let ðX11;X21Þ0; . . . ; ðX1n;X2nÞ0 be a random sample of size n from a
bivariate normal population with mean vector μ and covariancematrix Σ,
where

μ ¼ μ1
μ2

� �
and Σ ¼ σ2

1 ρ
ρ 1

� �
:

Let Di 5 X1i � X2i, i 5 1, . . ., n and θD ¼ μ1 − μ2
σ and dD ¼ D

SD
be the Cohen’s sizes of the

population and matched sample, respectively, where
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D ¼ 1

n

Xn

i¼1

Di and S
2
D ¼ 1

n� 1

Xn

i¼1

ðDi � DÞ2

are the mean and variance of Di’s, respectively. Then
ffiffiffi
n

p
dD ∼ tn−1ðλDÞ, where the noncentrality

parameter λD ¼
ffiffiffiffiffiffiffiffiffiffiffi

n
2ð1− ρÞ

q
θD.

Proof. Note that D∼Nðμ1 − μ2;
2ð1− ρÞσ2

n
Þ so that Z ≡

ffiffi
n

p
Dffiffiffiffiffiffiffiffiffiffiffi

2ð1− ρÞ
p

σ
∼NðλD; 1Þ, where

λD ¼
ffiffiffiffiffiffiffiffiffiffiffi

n
2ð1− ρÞ

q
θD. Also it is easy to know that

U ≡
ðn� 1ÞS2

D

2ð1� ρÞσ2 ∼ χ2n−1;

and D and S
2
D are independent. Therefore, by Definition 2.1,

T ¼ Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U=ðn� 1Þp ¼

ffiffi
n

p
Dffiffiffiffiffiffiffiffiffiffi

2ð1�ρÞ
p

σffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þ S2D

2ð1�ρÞσ2 =ðn� 1Þ
q ¼ ffiffiffi

n
p

dD ∼ tn−1ðλDÞ: (2.7)

so that the desired result follows. ,

Remark 2.1. The graphs of density curves of tm(λ) with different mean values J(m)λ
and different degrees of freedom m are given in Figures 1 and 2,
respectively. From graphs, we know that (i) density curves are symmetric
about mean J(m)λ, which is a function of m, so that the equal tailed
confidence intervals should be the best choice, and (ii) density curves tend
to N(λ, 1) as m to ∞.

0.4
noncentral t, df = 100

 = –2
 = –1
 = 0
 = 1
 = 2

0.3

0.2

0.1

D
en

si
ty

– 6 – 4 –2 0
x

2 4 6 8

0.0

λ
λ
λ
λ
λ

Figure 1.
The density curve

of noncentral
t-distribution with

degrees of freedom 100
and different values of
noncentral parameter λ
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Remark 2.2. For a given the confidence level c5 1� α, the c 100% confidence intervals of
λ based on T1 with m1 degrees of freedom and T2 with m2 with m1 < m2

degrees of freedom have the following relationship:

c ¼ PðjT1 � λj≤ tm1 ;ð1−cÞ=2Þ≥PðjT2 � λj≤ tm1 ;ð1−cÞ=2Þ; (2.8)

where tm,(1�c)/2 is the critical value of the t-distribution with m degrees of freedom. More
details for the confidence interval of Cohen’s effect size θ will be given in next section.

3. The APP methods for estimating both θ and θD
In this section, we will apply the APP methods for estimating Cohen’s effect size θ in
independent samples’ case and θD in matched sample case.

3.1 The minimum sample size required for estimating θ
First, we consider two independent samples from two normal populations Nðμ1; σ21Þ and
Nðμ2; σ22Þwith equal unknown variances: σ21 ¼ σ22 ¼ σ2.

Theorem 3.1. Let X11; . . . ;X1n1 be a random sample of size n1 fromN(μ1, σ
2), X21; . . . ;X2n2

be a random sample of size n2 from N(μ2, σ
2). Assume that two samples are

independent. Let c be the confidence level and f be the precision which
satisfies

P −fσd1 ≤ d � EðdÞ≤ fσd1

� � ¼ c; (3.1)

where E(d) 5 J(n1 þ n2 � 2) θ, d1 ¼ X11 −X21

S
and

0.4

0.3

N (1,1)
m = 20
m = 50
m = 100
m = 200

0.2

D
en

si
ty

0.1

0.0

–2 –1 0
x

1

Graph of  tm(1)

2 3 4 5

Figure 2.
The density curve
of noncentral
t-distribution with
noncentral parameter
λ 5 1 and different
values of degrees of
freedom
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Varðd1Þ≡ σ2
d1
¼ n1 þ n2 � 2

n1 þ n2 � 4
2þ θ2
� �� ðJðn1 þ n2 � 2ÞθÞ2;

J(n1þ n2� 2) is the correction factor given in (2.4). Both θ and d are given in (2.1) and (2.2). Let n
5 min{n1, n2} and fT($) be the density of t-distribution with degrees of freedom 2(n � 1) and

noncentrality parameter λ* ¼ ffiffiffiffiffiffiffiffi
n=2

p
θ. Then the required sample size n can be obtained by

solving Z U

L

fH
*
ðhÞdt ¼ c; (3.2)

where d* ¼ ðX 1* −X 2*Þ=S*, X 1*, S
2
1*

and X 2*, S
2
2*

are sample means and variances of

independent samples with same sample size n, respectively. Here S
2

* ¼ ðS2
1*
þ S

2
2*
Þ=2,

H* ¼ ½d* −Eðd*Þ�=σd*, which has density given by

fH
*
ðhÞ ¼

ffiffiffi
n

2

r
σd
*
fT

ffiffiffi
n

2

r
σd
*
hþ Jð2n� 2Þ λ*

� �
; (3.3)

where

Eðd*Þ ¼ Jð2n� 2Þ θ; Varðd*Þ ¼ σ2
d
*
¼ 2

n

n� 1

n� 2
ð1þ λ*Þ

2 � ½Jð2n� 2Þλ*�
2

� �
;

L ¼
−f σd

1*
σd
*

; U ¼ −L; σ2
d1*

¼ n� 1

n� 2
2þ θ2
� �� ðJð2n� 2ÞθÞ2: (3.4)

Proof. By Proposition 2.1, we know that T1 ¼
ffiffiffiffiffiffiffiffiffi
n1n2
n1þn2

q
d ∼ tn1þn2−2ðλÞ, where

λ ¼
ffiffiffiffiffiffiffiffiffi
n1n2
n1þn2

q
θ. Thus, the mean and variance of d, are given, respectively, by

EðdÞ ¼ E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 þ n2

n1n2

r
T1

� �
¼ Jðn1 þ n2 � 2Þ θ (3.5)

and

VarðdÞ≡ σ2d ¼
n1 þ n2

n1n2

n1 þ n2 � 2

n1 þ n2 � 4
1þ λ2
� �� Jðn1 þ n2 � 2Þ λð Þ2

� �
: (3.6)

Now it is easy to obtain the density ofH ¼ d−EðdÞ
σd

, which is symmetric about 0 and given by

fH ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðT1Þ

p
fT1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðT1Þ

p
t þ Jðn1 þ n2 � 2Þ λ

	 

; (3.7)

where fT1
is the density of T1. Note that if we have two independent random samples of sizes

n1 and n2, we can construct the 100c% confidence interval for θ based on (3.7). Now, let

T2 ¼ d1ffiffi
2

p ¼ X1 −Y1ffiffi
2

p
S
, which has a noncentral t distribution with n1 þ n2 � 2 degrees of freedom

and noncentrality parameter θ=
ffiffiffi
2

p
. Thus, the unbiased estimator of θ is

ffiffiffi
2

p
T2. Note that the

variance of d1 is
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σ2d1 ¼ 2 VðT2Þ ¼ n1 þ n2 � 2

n1 þ n2 � 4
2þ θ2
� �� ½Jðn1 þ n2 � 2Þ�2θ2: (3.8)

Therefore, we can setup the confidence interval for given confidence level c and precision f,
which is given in (3.1). Since there are two unknowns n1 and n2, there are no solutions using
Equation (3.1) so we need to modify this equation. Let n5 min{n1, n2} so that the degrees of
freedom n1 þ n2 � 2 ≥ 2n � 2. Suppose that we have two independent samples of size n in

both; then, S2

* ¼ S2
1þS2

2

2 , and the distribution of d* ¼ ðX 1 −X 2Þ=S* is the noncentral t with

2(n � 1) degrees of freedom and the noncentrality parameter λ* ¼ n
2 θ so that its mean and

variance are

Eðd*Þ ¼ Jð2n� 2Þ θ and Varðd*Þ ¼ σ2d* ¼
2

n

n� 1

n� 2
ð1þ λ*Þ

2 � ½Jð2n� 2Þλ*�
2

� �
:

Thus, the standardized random variable H* ¼ d* −Eðd*Þ
S*

has the density given in

Equation (3.3). Therefore, the required n can be obtained by solving Equation (3.2).

Similarly to Remark 2.2, we know that H2ðn−1Þ;ð1−cÞ=2 ≥Hn1þn2−2;ð1−cÞ=2, where Hm,(1�c)/2 is the

critical value of the distribution H. It is easy to see that

c ¼ P −H2ðn−1Þ;ð1−cÞ=2 ≤H* ≤H2ðn−1Þ;ð1−cÞ=2
� �

≥P −H2ðn−1Þ;ð1−cÞ=2 ≤H ≤H2ðn−1Þ;ð1−cÞ=2
� �

(3.9)

so that the desired results follows. ,

Remark 3.1. The required n obtained in Theorem 3.1 is unique. Also, if the conditions in
Theorem 3.1 are satisfied, we can construct a c3 100% confidence interval
for θ ¼ μ1 − μ2

σ

d* � σd1* f

Jð2n� 2Þ ;
d* þ σd1* f
Jð2n� 2Þ

� �
; (3.10)

where σd1* is given in (3.4) and θ 5 θ0, which can be obtained from the previous data,
otherwise the default θ 5 0.

Remark 3.2. In order to see that Equation (3.9) holds numerically, we provide
probabilities of the c 5 95% confidence intervals for different sample
sizes n1 and n2, which is given in Table 1.

θ n1 n2 df H2n�2,(1�c)/2 P(jHj < H2n�2,(1�c)/2)

0 100 100 198 13.87366 0.95
120 218 0.9395
150 248 0.9267

0.2 100 100 198 13.87366 0.9512
120 218 0.9408
150 248 0.9281

0.5 100 100 198 14.04887 0.9528
120 218 0.9427
150 248 0.9302

0.8 100 100 198 14.14443 0.9547
120 218 0.9445
150 248 0.9322

Table 1.
Probabilities of the
c 5 95% confidence
intervals for different
sample sizes n1 and n2
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Remark 3.3. Researchers can access at the following website https://appcohensd.
shinyapps.io/independent/ to obtain the required sample size. The input
variables are the value of θ0 from the previous data by previous data or
θ0 5 0, precision f, and confidence level c. For convenience, the output
variable is the required sample size n5 min{n1, n2}. The required sample
sizes for different values of precision f 5 0.1, 0.15, 0.2, 0.25, confidence
levels c5 0.95, 0.90 and θ05 0, 0.1, . . ., 1 for independent case are given in
Table 2. The relationship between required sample n and parameter θ for
different values of precision f is given in Figure 3.

θ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f 5 0.1 c 5 0.95 382 384 386 389 392 396 405 411 415 423 436
c 5 0.90 268 269 271 273 276 279 283 287 294 300 304

f 5 0.15 c 5 0.95 169 170 171 173 174 176 180 183 186 191 194
c 5 0.90 118 119 120 121 122 124 125 127 130 133 135

f 5 0.2 c 5 0.95 94 95 96 97 98 99 100 102 104 106 110
c 5 0.90 66 66 67 67 68 69 70 71 73 74 76

f 5 0.25 c 5 0.95 60 60 61 62 63 63 64 65 67 68 70
c 5 0.90 41 41 42 42 43 44 44 45 46 47 49

600

500

400 f = 0.1

f = 0.15

f = 0.2

f = 0.25

300

200

Re
qu

ire
d 

sa
m

pl
e 

siz
e 
n

θ

100

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Table 2.
The desired sample

sizes n for f5 0.1, 0.15,
0.2, 0.25, θ 5 0, 0.1, . . .,
1 and c5 0.95, 0.9 in the

independent case

Figure 3.
The relationship
between required

sample n and
parameter θ for

c 5 0.90 and different
values of precision f
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3.2 The minimum sample size of Cohen’s d needed for a given sampling precision in
matched samples

Theorem3.2. Let ðX11;X21Þ0; . . . ; ðX1n;X2nÞ0 be a random sample of size n from a bivariate
normal population with mean vector μ and covariance matrix Σ, where

μ ¼ μ1
μ2

� �
and Σ ¼ σ2

1 ρ
ρ 1

� �
:

Denote Di 5 X1i � X2i, i 5 1, . . ., n. Let θD ¼ μ1 − μ2
σ and dD ¼ D

SD
be the Cohen’s effect sizes of

the population and matched sample, respectively, where

D ¼ 1

n

Xn

i¼1

Di and S
2
D ¼ 1

n� 1

Xn

i¼1

ðDi � DÞ2

are the mean and variance of Di’s, respectively. The density function of
ffiffiffi
n

p
dD is fT, the density

noncentral t-distribution with n � 1 degrees of freedom and noncentrality parameter

λD ¼
ffiffiffiffiffiffiffiffiffiffiffi

n
2ð1− ρÞ

q
θD. Also, the mean and variance of dD are given by

EðdDÞ ¼ Jðn� 1Þ λD
� ffiffiffi

n
p

and σ2
dD

¼ 1

n

n� 1

n� 3
1þ λ2D
� �� Jðn� 1Þ λDð Þ2

� �
:

Let c be the confidence level and f be the precision which satisfies

Pð−fσd1
D
≤ dD � EðdDÞ≤ fσd1

D
Þ ¼ c; (3.11)

where d1D ¼ D1

SD
and

Eðd1DÞ ¼
Jðn� 1Þ θDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1� ρÞp ; Varðd1DÞ ¼ σ2
d1
D

¼ n� 1

n� 3
1þ θ2D

2ð1� ρÞ
� �

� ½Jðn� 1Þ θD�2
2ð1� ρÞ :

Then the required sample size n can be obtained byZ U

L

fH ðtÞdt ¼ c; (3.12)

where fH is the density of H ¼ ½dD −EðdDÞ�=σdD given by

fH ðhÞ ¼
ffiffiffi
n

p
σdDfT

ffiffiffi
n

p
σdD hþ Jðn� 1Þ λD

� �
(3.13)

and

L ¼ −f
σd1

D

σdD

U ¼ −L: (3.14)

Proof. By Proposition 2.2, we know that T ¼ ffiffiffi
n

p
dD ∼ tn−1ðλDÞ, where λD ¼

ffiffiffiffiffiffiffiffiffiffiffi
n

2ð1− ρÞ
q

θD.
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It is easy to see that the mean and variance of dD are given by

EðdDÞ ¼ Jðn� 1Þ λD
� ffiffiffi

n
p

and σ2
dD

¼ 1

n

n� 1

n� 3
1þ λ2D
� �� Jðn� 1Þ λDð Þ2

� �
:

Thus, the density ofH is given in Equation (3.13). Now, we know that d1D ¼ D1=SD ∼ tn−1ðλ1DÞ,
where λ1D ¼ θDffiffiffiffiffiffiffiffiffiffiffi

2ð1− ρÞ
p . Then, the variance of d1D is

σ2
d1
D

¼ n� 1

n� 3
1þ λ1D

� �2	 

� Jðn� 1Þ λ1D
� �2

:

From the distribution of H, we can obtain the required sample size n which is given in
Equations (3.12) - (3.14) so that the desired result follows. ,

Remark 3.4. The value of n obtained is unique with f. Also, if the conditions in Theorem
3.2 are satisfied, we can construct a c 3 100% confidence interval for θD
given by

ðdD � σd1
D
f Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1� ρÞp
Jðn� 1Þ ;

ðdD þ σd1
D
f Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1� ρÞp
Jðn� 1Þ

" #
;

where θD ¼ θD0
, which can be obtained from the previous data, otherwise the

default θD 5 0.

Remark 3.5. Researchers can access at the following website: https://appcohensd.
shinyapps.io/matched/

The input variables are the confidence level c, precision f, correlation coefficient ρ and
θD ¼ θD0

obtained from previous data information. The default value of θD5 0. The output
is the desired sample size n required. Table 3 provides the n for c5 0.90, 0.95 for different
values of f and different values of θD0

’s. Also the relationship between n and θD is given in
Figure 4.

θD 0 0.2 0.5 0.8

f 5 0.1 ρ 5 0.2 c 5 0.95 382 389 418 470
c 5 0.90 267 273 293 330

ρ 5 0.5 c 5 0.95 382 392 436 517
c 5 0.90 267 276 304 363

ρ 5 0.8 c 5 0.95 382 407 514 705
c 5 0.90 267 284 361 490

f 5 0.15 ρ 5 0.2 c 5 0.95 168 173 186 207
c 5 0.90 117 120 130 144

ρ 5 0.5 c 5 0.95 168 175 198 231
c 5 0.90 117 122 135 163

ρ 5 0.8 c 5 0.95 168 180 234 325
c 5 0.90 117 126 162 216

f 5 0.25 ρ 5 0.2 c 5 0.95 59 61 67 76
c 5 0.90 40 42 46 51

ρ 5 0.5 c 5 0.95 59 62 71 81
c 5 0.90 40 42 48 58

ρ 5 0.8 c 5 0.95 59 65 82 118
c 5 0.90 40 44 58 77

Table 3.
The desired sample

sizes n for f5 0.1, 0.15,
0.25, θD5 0, 0.2, 0.5, 0.8
and c 5 0.95, 0.9 in the
case of ρ 5 0.2, 0.5, 0.8
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4. Simulation and real data examples
In this section we will provide some simulation results and two real data examples to support
our main results. Based onM5 100,000 runs, coverage rates of the confidence intervals and
the corresponding point estimates of θ in independent case and θD for matched data are given
in Tables 4 and 5. From these two tables, we can see that the performances of our APP
procedures work very well and the biases are really small.

To evaluate our results, we provide a real data example for independent andmatch sample
cases, respectively.

Example 4.1. Consider the salary data (in 2011) of all professors from College of Arts and
Sciences and College of Engineering (population 1 with size 85) and other
colleges (population 2 with size 93) of New Mexico State University, which
are publicly available https://riograndefoundation.org/downloads/rgf_pr_
nmsu.pdf

The estimated distributions based on the data set are approximately N(8.0868, 1.10992) for
population 1 and N(9.5273, 1.41152) for population 2 (with unit $10,000) (see Figures 5 and 7).
The Q–Q plots of the data sets are given in Figures 6 and 8, showing that the scatters lie close
to the line with no obvious pattern coming away from the line in both Q–Q plots. Now
we consider the 95% confidence interval of θ with precision f 5 0.25 and default θ 5 0.
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Figure 4.
The relationship
between required
sample n and
parameter θD for
ρ 5 0.5, c 5 0.90 and
different values of
precision f
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From Table 2, the minimum sample sizes n needed is 60, so we randomly choose samples of
size 60 from both populations and obtain the value of Cohen’s d is d 5 �1.1430. Then by
Remark 3.1, the 95% confidence interval of θ is [�1.4900, �0.7814], which includes the true
value of population effect size θ 5 �1.1284.

f θ

c 5 0.95 c 5 0.90

n bθ Coverage rate n bθ Coverage rate

0.1 0 382 0.0001 0.9489 268 0.0001 0.8971
0.2 386 0.1999 0.9509 271 0.2004 0.8976
0.5 396 0.5002 0.9499 279 0.5007 0.8988
0.7 411 0.7007 0.9509 287 0.7012 0.9008
1 436 1.0007 0.9509 304 1.0012 0.8997

0.15 0 169 �0.0002 0.9489 118 �0.0003 0.8976
0.2 171 0.2008 0.9499 120 0.2006 0.8998
0.5 176 0.5007 0.9503 124 0.5009 0.9006
0.7 183 0.7013 0.9511 127 0.7023 0.9011
1 194 1.0019 0.9508 135 1.0031 0.8987

0.2 0 94 �0.0004 0.9473 66 0.0005 0.8981
0.2 96 0.2013 0.948 67 0.1998 0.8978
0.5 99 0.5009 0.9497 69 0.5045 0.898
0.7 102 0.7023 0.952 71 0.7029 0.8985
1 110 1.0025 0.9469 76 1.0051 0.9007

0.25 0 60 0.0002 0.9469 41 �0.0005 0.8913
0.2 61 0.2009 0.9472 42 0.2026 0.8951
0.5 63 0.5028 0.9469 44 0.5049 0.898
0.7 65 0.7046 0.9489 45 0.7058 0.8974
1 70 1.0054 0.9522 48 1.0085 0.8983

f θD

c 5 0.95, ρ 5 0.2 c 5 0.95, ρ 5 0.5 c 5 0.95, ρ 5 0.8

n cθD Coverage
rate n cθD Coverage

rate n cθD Coverage
rate

0.1 0 382 0.0001 0.9503 382 �0.0001 0.9488 382 0.0001 0.9499
0.2 389 0.2002 0.9496 392 0.2004 0.9502 407 0.2006 0.9501
0.5 418 0.5007 0.9514 436 0.5007 0.9505 514 0.5008 0.9535
0.7 447 0.7008 0.9506 493 0.7011 0.9529 625 0.7009 0.9513
1 514 1.0015 0.9517 594 1.0011 0.9539 892 1.0008 0.9542

0.15 0 168 �0.0003 0.9468 168 �0.0001 0.947 168 �0.0001 0.9486
0.2 173 0.2013 0.9499 175 0.2009 0.9495 173 0.2007 0.9509
0.5 186 0.5024 0.9498 198 0.5019 0.9529 207 0.5014 0.9544
0.7 199 0.7027 0.9515 222 0.7024 0.9544 291 0.7019 0.9564
1 234 1.0033 0.9545 257 1.0032 0.9509 391 1.0018 0.9517

0.2 0 93 0.0001 0.9448 93 �0.0003 0.9444 93 0 0.9452
0.2 97 0.2016 0.9486 98 0.2013 0.949 102 0.2014 0.9511
0.5 104 0.5038 0.9485 110 0.5039 0.9509 129 0.5026 0.9524
0.7 115 0.704 0.9546 125 0.7043 0.9531 159 0.7034 0.9513
1 129 1.0058 0.9527 154 1.0044 0.9575 228 1.0034 0.956

0.25 0 59 0.0001 0.9448 59 0.0001 0.9451 59 �0.0003 0.9438
0.2 61 0.2025 0.9486 62 0.2022 0.9489 65 0.2019 0.9491
0.5 67 0.5062 0.9497 71 0.5057 0.9514 82 0.5042 0.9532
0.7 73 0.7071 0.9526 80 0.7066 0.9538 105 0.7051 0.9562
1 82 1.0098 0.9529 97 1.0075 0.9563 146 1.0055 0.956

Table 4.
The corresponding
point estimates of θ

and the coverage rates
when n satisfies the
required minimum

sample size for f 5 0.1,
0.15, 0.2, 0.25, θ5 0, 0.2,
0.5, 0.7, 1 and c 5 0.95,

0.9 in the
independent case

Table 5.
The corresponding

point estimates of θD
and the coverage rates

when n satisfies the
required minimum

sample size for f 5 0.1,
0.15, 0.2, 0.25, θ5 0, 0.2,
0.5, 0.7, 1, ρ 5 0.2, 0.5,
0.8 and c 5 0.95 in the

matched case
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Example 4.2. For matched case, we consider the data set named “Rugby” from Pakage
“PairedDate” in R by Champely (2018). This data set provides the ratings
on a continuous ten-point scale of two experts about 93 actions during
several rugby union matches. Let D be the difference between ratings of
two experts. The histogram and estimated density curve of D are given in
Figure 9. From the data, we obtain D ¼ −0:3011 and SD 5 1.4872. The
pattern of the points of the scatter plot shown in Figure 10 shows a positive
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linear relationship between this two variables. After calculation, we get the
correlation coefficient is ρ 5 0.85. Now we consider the 95% confidence
interval of population effect size θD with precision f 5 0.25 and default
θ 5 0. By the shinyApp provided in Section 4 for matched data, the
minimum sample sizes n needed is 59. Randomly select a sample with 59
paired data; then by Remark 3.2, we have the 95% confidence interval of θD
is [�0.3122, �0.0371], which includes the true value of population effect
size �0.1122.
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5. Conclusion remarks
Our goal was to derive ways to perform the APP with respect to Cohen’s d for independent
andmatched samples. The present mathematics provide those derivations. In turn, computer
simulations support the mathematical derivations. We also provide links to free and user-
friendly programs to facilitate researchers performing the APP to determine sample sizes to
meet their specifications for precision and confidence. An advantage of the programs is that
even researchers who are unsophisticated in mathematics nevertheless can avail themselves
of APP advantages.

In addition to the obvious benefit of aiding researchers who wish to compute Cohen’s
d determine the samples sizes they need the present mathematics provide an additional
benefit. Specifically, the famous article in Science by the Open Science Collaboratio (2015)
included replications of studies in top psychology journals. They found that the average
effect size in the replication cohort of studies was less than half that in original cohort of
studies. Thus, effect sizes tend not to replicate across study cohorts. Our suspicion is that one
reason for irreproducibility is that sample sizes are too small and traditional power analyses
are insufficient because they do not address the precision issue (Trafimow and My€uz, 2019;
Trafimow et al., 2020b), though significance testing doubtless plays a role too. The present
mathematics, along with the links to computer programs, provide a solution. We hope and
expect that researchers whowish to use Cohen’s d to index their effect sizes will be better able
to determine appropriate sample sizes, and thereby increase reproducibility in the social
sciences.
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